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Short Papers

Predistortion Techniques for Multicoupled Resonator

Filters

A. E. WILLIAMS, W G. BUSH, AND R. R. BONETTI

,4&ract —This paper presents predistorted, Iossy design techniques as

applied to general, multiconpled, resonator networks. The analytical proce-

dnre predistorts the poles of the transfer function to recover the Iossless

passband flatness at the expense of insertion 10SS.Experimental results on

4- and 6-pole elliptic-function filters confirm the validity of the theory.

These techniques should lead to significant system efficiencies in applica-

tions such as satellite transponder input multiplexer.

I. INTRODUCTION

A standard multicoupled-cavity filter employs synchronously

tuned resonators coupled via apertures to produce the desired

transfer function. Typically, the synthesis procedure assumes that

the resonator losses are sufficiently minimaf to realize a transfer

response that is only marginally different from the lossless theo-

retical functions. This assumption is invalid, however, for designs

with low cavity Q‘s or bandwidths that are very small compared

to the center frequency. Under these conditions, significant

band-edge rounding of the response occurs. In some applications,

such as when a filter precedes a nonlinearity in a satellite trans-

ponder, this rounding can lead to severe degradation in com-

munications system performance.

In 1939, Darlington [1] showed that the lossless insertion loss

response of a network could be essentially recovered by realizing

a transfer function whose poles were shifted to compensate for

the network loss. Previous works [2], [3] applied this technique to

the realization of all pole functions in coupled microwave reso-

nators. This paper extends this theory to optimum filter transfer

functions, which have poles and finite zeros. Experimental results

on a narrow-band 12-GHz, 4-pole filter and a C-band, 6-pole

dielectric-loaded filter are in good agreement with the theory.

II. THEORY OF POLE PREDISTORTION

The general low-pass insertion loss function t(s) that can be

synthesized by coupled cavities is given by

[ 1fj(s’+.;)2 “
11(.s)[’= 1+6’(-1)’’s’” ~;l

,l-Il(s’+p;)’

(1)

with the constraint n + 2 m + 1>21. This function can be de-

termined from lt(s)l’ = t(s). t(– s), giving

~ i,(w)
1(s)=;

J-J(s-zl)
(2)
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where u represents the poles of the transfer function and ~(s – U)

is a Hurwitz polynomial

Since ]p(.s)\’ =1– It(S)Iz and lp(s)l’ =p(s)p(-s)

,fil(s’+zi)

p(s) =(–l)n, n
Kl(s-u) “

(3)

The actual response of a reaf filter will differ from 1(s) and

p(s) because losses are present in the structure. Assuming uni-

form dissipation, the circuit model is modified to include a loss

resistance r in each resonator. This gives the model shown in Fig.

1. The resulting low-pass functions are then obtained by replac-

ing s with s + r, which causes the frequency axis to shift to the

right in the s-plane, where r is given by

1

‘= QU. FBW
(4)

QU is the unloaded resonator Q, and F~w represents the frac-

tional bandwidth. The transfer and reflection functions that

result in the presence of loss [t’ (s) and p’ (s)] are, therefore,

given by

t’(s) =t(s+r)

p’(s) =p(s+r)

and the dissipated power by

lA’(s)l’ =1- ll’(S )12- IP’(S) 12.

The most straightforward way to counter this loss is to displace

all the poles and zeros of t(s) by r in the z-plane. However, since

coupled-cavity resonator networks require zeros on the imaginary

axis, only the poles can be predistorted. Fortunately, this has

only a small effect on the in-band behavior of the filter, since the

zeros mainly affect the out-of-band behavior. It should be noted

that the poles cannot be shifted out of the left half of the s-plane.

Thus, in cases where r is quite large, a good design can often be

obtained by partial predistortion (presifting the poles by some

fraction of r).

Full predistortion results in a transfer function tp (s) given by

(5)

where K is introduced to ensure that tp (s ) has a maximum

magnitude of unity. Fig. 2 illustrates the pole predistortion of a

6-pole, elliptic-function filter, and the effect on the transmission

and return loss is shown in Figs. 3 and 4. The group delay of the

Iossless filter is essentially recovered by the predistorted process.

Two properties of this procedure are important to the filter

design. As shown in Fig. 4, pole predistortion increases the

amount of power reflected and the insertion loss of the network.

These effects can be understood in terms of the design process. In

the predistorted, Iossless case, the baud-edges of the transmission

response are considerably higher than the center. This is neces-

sary to give the resulting filter (with loss present) a flat in-band

response. The introduction of loss attenuates the band-edges

more than the center of the band, so the response flattens out.
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Fig 1. Equivalent circuit of n-coupled cavities with uniform dissipation.
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Fig. 2. Typicaf location of poles and zeros for a 6-pole elliptic-function

bandpass filter.
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Fig. 3. Theoretical transmission responses of a6-pole elliptic-functlon filter,

Pole predistortion is, therefore, limited to those applications

where minimum insertion and maximum return loss are not

required.

Several other effects can be examined in terms of the transfer

function pole locations. Forelliptic-function filters, the behavior
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Fig. 4. Theoretical return loss responses ofa6-pole elliptic-function filter

of the pole closest tothefrequency axis dominates the band-edge

response. It is largely the movement of this pole in the lossy,

nonpredistorted design that leads to rounding of the band-edge.

If this pole pair occurs at s = – a + jb, a good approximation of

the center frequency insertion loss L~c that will result with a

predistorted design is

()L~c = 2010g ~ , a>r. (6)

Thus, more selective filters will demonstrate greater insertion

losses by using predistortion, since the poles are closer to the real

axis. The real part of this pole also limits the amount of predis-

tortion that can be applied. The use of (6) will give a good initiaf

indication of whether

is the most desirable.

The synthesis of

full or partiaf predistortion of the network

III. SYNTHESIS

the predistorted transfer function (5)

is nearly- identical to that- described by Atia, Williams, and

Newcomb [4]. Using Darlington’s notation [1], the lossless low-

pass transfer function is expressed as

P(s)
t(s) =

A(S)+ SB(S)
(7)
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The real parts of the residues will be equivalent, so the couplings

a ‘m and resistances will be symmetrical. However, the introduction of
o S. PLANE

o
a nonzero imaginary part in the admittances will cause the

solution to be asynchronous. This means that the cavities will be
Re tuned to frequencies that are slightly offset from the filter center

frequency. The sum of these mistuning will be zero for a filter
o with a frequency response that is symmetrical about its center

00 frequency.

Fig. 5 illustrates examples of possible reflection zero choices.

(a)”
Typically, a total left- or right-half plane set is chosen to simplify

the tuning process. However, in cases where this choice dictates

coupling or resistance values that may be difficult to realize, the

asynchronous solution may be the most attractive.

o ‘m
o S. PLANE

o
Re

o

0°

(b)

Fig. 5. Examples of reflection zero choices for synchronous and asynchronous

realizations. (a) Synchronous, (b) Asynchronous.

and the reflection as

AI’(S)+SB’(S)
p(s) =–A(~)+~B(~) (8)

where A(s), A’(s), B(s), l?’(s), and P(S) are all even poly-

nomials. The general short-circuit admittances are

y =4 –jIm[A’(s)] +s[B(s)– B’(s)]
11 RI ,4(s) +Re[.4’(s)]

P(s)

“1= & A(s)+ Re[A’(s)]

~ =~~Im[xl’(s)] +s[B(s)+ B’(s)]
,,,, R,, A(J)+ Re[A’(s)] “

(9)

The coupling matrix is constructed from the residues of Yll

and ~,,, evaluated at the roots of the polynomial ,4(s)

+ Re [ ,4’(s)]. The type of solution that results depends on the

choice of reflection zeros derived from the relation 1p (s ) 2 = p(s)
.P(s ). For the conventional, nonpredistorted design, all reflection

zeros lie on the imaginary axis, so only one choice exists. This

results in

Im[,4’(s)] = W(s) =0. (lo)

Thus, the residues of Yll and ‘~fl are equivalent, and a symmetri-

cal filter results.

In the predistorted design, a choice can be made in selecting

the reflection zeros. If total left- or right-half plane zeros are

chosen, then

Im[A’(s)] =0. (11)

The residues of Yll and YflH will be real, but they will differ.

Thus, an asymmetric, synchronously tuned filter will be realized.

If a combination of left- and light-half plane zeros is chosen, the

IV. SIXTH-ORDER FILTER DESIGN

As a design example, the predistortion of a 6-pole elliptic

function filter is presented. Assuming an in-band ripple of 0.15

dB and a selectivity of 1.135, the poles of the transfer function

are

–0.6333 ~ jO.4150

–0.2329+ jO.9107

– 0.0464 k jl .0264.

For the application of a very narrow-band filter with a fractional

bandwidth of 0.734 percent and a Q of 8000, the pole shift will

be r = 0.0170. Full-pole predistortion can be used, and as an

approximation, the insertion loss will be about

L~c G 2010g
[

0.0464 – 0.0170 = s 96 dB

0.0464 1
The new transfer function poles are

– 0.6163 ~ jO.4150

–0.2159+j0.9107

– 0.0294 ~ jl .0264.

The zeros of the transfer function (before and after predistortion)

are & jl.1553 and + jl.4273.

Choosing all left-half plane reflection zeros, the Darlington

polynomials become

A(S) =s6+3.10s4 +2.62s2 +0.51

B(s) =1.72s4 +3.18s2 +1.41

P(s) = 0.13s4 +o.43s~ +0.34

A’(s) = S6 +2.69s4 +2.07s2 +0.37

B’(S) =1.46s4 +2.55s2 +1.08

Note that Im [ A’(s )] = O and B’(s) # O. Thus, the resulting filter

will be synchronously tuned, but its couplings and resistances will

not be symmetrical.

Evaluating the residues of the short-circuit admittances at the

roots of {A(s)+ Re [ A’(s )] } and rotating the resulting matrix to

the desired form, the normalized couplings and resistances are

found to be

RI =1.588 Md~ = – 0.852

R6 = 0.130 Mj6 = 0.559

M12 = 1.037 M16 = –0.139

MZ3 = – 0.672 M~6 = – 0.411.

M~d = –0.379

result is
With these values, the implemented filter showed an insertion

B’(s)=o. (12) 10SS of 4.0 dB.
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Fig. 6. Transmission and return loss response of a predistorted, 12-GH2

20-MHz bandwidth 4-pole elliptic-function filter,
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Fig. 7. In-band transmission responses of a predistorted, 12-GH2 20. MHz
bandwidth 4-pole elliptic-function filter.

Fig. 8. A 12-GH2 4-pok predistorted elliptic-function filter,
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C-briad elliptic-function filters.

Since the Q may not be exactly known before the filter is

constructed, several iterations may be necessary. However, as-

suming a fairly good initiaf estimate of the Q, the parameter

values should change only slightly.

V. EXPEFUMENTAL FILTERS

A 20-MHz bandwidth, 4-pole, elliptic-function, predistorted

filter with a center frequency of 12 GHr was designed to operate

in dual TEllg-moded aluminum cavities. For a Q of 8000, the
pole predistorted design factor r = l/( QUF~w) = 0.075. The

asymmetrical set of couplings was derived, and the physicaf

cavity dimensions were determined by using standard lossless

filter design techniques. The experimental insertion and return

loss of the filter is shown in Fig. 6, and the in-band insertion loss

is shown in Fig. 7. The measured response corresponds to a

cavity Q in excess of 9000. Fig. 8 is a photograph of this filter.

To further illustrate the effects of predistortion, two 6-pole

elliptic filters were designed with the dual HE118 dielectric-loaded

cavity mode. The first filter was designed by using conventional

lossy techniques [4], and the second filter design was derived

from the numerical example given in the previous section. Both

designs had a center frequency of 3.986 GHz, a bandwidth of 29

MHz, and an unloaded Q of 8000. The measured responses for

both units are compared in Figs. 9 and 10. The effects of

predistortion are clearly evident. Fig. 11 is a photograph compar-

ing the size of a C-band, air-filled, dual-mode cavity filter and the

C-band, dual-mode dielectric-loaded cavity filter.

It should be emphasized that, because of the poor return loss

generated by the predistortion process, high-qurdity circulators

(with return loss greater than 35 dB and VSWR less than 1.04)

must be used with predistortion filters.

VI. CONCLUSIONS

Predistortion pole techniques, as applied to optimum filter

transfer functions, are successfully realized in general

microwave-coupled resonator structures. Symmetrical asynchro-

nous and asymmetrical synchronous solutions are derived. Tech-

niques such as these can lead to significant improvements in

system efficiencies for applications such as satellite transponder

input multiplexer, where insertion loss can be traded for in-band

flatness.
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Fig. 11. Comparison of the C-band dusl-mode dielectric-function filter and a“

C-band air-filled dual-mode filter,
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Singularity Extraction from the Electric Green’s

Function for a Spherical Resonator

M. BRESSAN AND G. CONCIAURO

,4fi.wract—The electric dyadic Green’s function for a spherical resonator

is expressed as a sum of two dyadics given in closed forrtr and a dyadic

given in the fomr of a series. The first two dyadics diverge at ~e source

point and they represent a low-frequency approximation for the Green’s

function, vafid up to frequencies moderately lower than the resortant

frequency of the dominant mode. The dyadic given in the forar of a series

is finite at the source and takes into account cavity resonances. It is given

either as a one-index series, whose terms are transcendental functions of

the frequency, or as a double series, whose terms are rational functions of

the frequency. Both series have very good converging properties every-

where inside the cavity.

I. INTRODUCTION

The electric field at any point inside a cavity resonator bounded

by a perfectly conducting wall, filled with a linear, isotropic,

homogeneous medium with constitutive parameters c, p, and

Manuscript received March 7, 1984; revised Jauuar-y 4, 1985.
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excited by time-harmonic (exp jti t) electric sources may be ex-

pressed as

E(r) = – jup lim J
~.J(r)

~,(r, r’, k). J(r’) du’– —
8-0 V–va juc

(1)

In this expression, r, r’ are the observation and the source points,

respectively, k = tifi, J is the current density, ~, is the dyadic

Green’s function of the electric type, V is the cavity volume, V. is

a principal volume about r having dimensions proportional to 8,
and, finally, ~ is a constant dyadic which is determined only
from the geometry of V8 [1]. Numerical calculations of E maybe

performed conveniently using a generalization of (l), differing

from it for Vd being allowed to be finite and for the inclusion of a

further integral over Va, involving G= [2].

Green’s functions for bounded regions are usually given in the

form of modal expansions, obtained by general procedures such

as those described by Tai [3] and Felsen–Marcuvitz [4]. Examples

of these expansions are given in [5]–[8] and in the next section.

Though being of great theoretical interest, such modal series are

unsuitable for use in numerical algorithms (moment method, for

instance) which require the computation of the electric field

inside the source ?egion. In this case, indeed, the Green’s function

must be computed at points r’ close to r, where the convergence

of the series is very poor due to the singularity of ~, at r’= r.

We recall that, in three-dimensional Green’s functions, this singu-

larity is of the order R-3, where R is the distance between the

source and the observation points.

This drawlback can be avoided by using expressions where a

diverging term, expressed in closed form, is extracted from the

modal expansion of ~e, so that the remaining series represents a

function finite at r’= r. This series, in fact, is expected to

converge very well everywhere. In this paper, we deduce an

expression of this type for a spherical resonator.
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