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Short Papers

Predistortion Techniques for Multicoupled Resonator
Filters

A. E. WILLIAMS, W G. BUSH, anp R. R. BONETTI

Abstract —This paper presents predistorted, lossy design techniques as
applied to general, multicoupled, resonator networks. The analytical proce-
dure predistorts the poles of the transfer function to recover the lossless
passband flatness at the expense of insertion loss. Experimental results on
4- and 6-pole elliptic-function filters confirm the validity of the theory.
These techniques should lead to significant system efficiencies in applica-
tions such as satellite transponder input multiplexers.

I. INTRODUCTION

A standard multicoupled-cavity filter employs synchronously
tuned resonators coupled via apertures to produce the desired
transfer function. Typically, the synthesis procedure assumes that
the resonator losses are sufficiently minimal to realize a transfer
response that is only marginally different from the lossless theo-
retical functions. This assumption is invalid, however, for designs
with low cavity Q’s or bandwidths that are very small compared
to the center frequency. Under these conditions, significant
band-edge rounding of the response occurs. In some applications,
such as when a filter precedes a nonlinearity in a satellite trans-
ponder, this rounding can lead to severe degradation in com-
munications system performance.

In 1939, Darlington [1] showed that the lossless insertion loss
response of a network could be essentially recovered by realizing
a transfer function whose poles were shifted to compensate for
the network loss. Previous works [2],[3] applied this technique to
the realization of all pole functions in coupled microwave reso-
nators. This paper extends this theory to optimum filter transfer
functions, which have poles and finite zeros. Experimental results
on a narrow-band 12-GHz, 4-pole filter and a C-band, 6-pole
dielectric-loaded filter are in good agreement with the theory.

II. THEORY OF POLE PREDISTORTION

The general low-pass insertion loss function #(s) that can be
synthesized by coupled cavities is given by
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with the constraint n+2m +1> 2/. This function can be de-
termined from |#(s)|? = #(s)-2(— ), giving
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where v represents the poles of the transfer function and [I(s — v)
is a Hurwitz polynomial.
Since |p(s)|> =1—|#(s)|* and [p(s)[* = p(s)-p(—3)
IT(s*+ z})
k=1
=(-Dnntt — 3
p(S) ( )nsn H(S*U) ( )

The actual response of a real filter will differ from #(s) and
p(s) because losses are present in the structure. Assuming uni-
form dissipation, the circuit model is modified to include a loss
resistance r in each resonator. This gives the model shown in Fig,
1. The resulting low-pass functions are then obtained by replac-
ing s with s+ r, which causes the frequency axis to shift to the
right in the s-plane, where r is given by

1

r=—".
Qu‘FBW
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Q,, is the unloaded resonator Q, and Fyy represents the frac-
tional bandwidth. The transfer and reflection functions that
result in the presence of loss [¢/ (s) and o' (s)] are, therefore,
given by

v(s)=t(s+r)

d(s)=p(s+r)
and the dissipated power by

1¥(s)P =1=1(s) P =10 ()]

The most straightforward way to counter this loss is to displace
all the poles and zeros of ¢(s) by r in the z-plane. However, since
coupled-cavity resonator networks require zeros on the imaginary
axis, only the poles can be predistorted. Fortunately, this has
only a small effect on the in-band behavior of the filter, since the
zeros mainly affect the out-of-band behavior. It should be noted
that the poles cannot be shifted out of the left half of the s-plane.
Thus, in cases where r is quite large, a good design can often be
obtained by partial predistortion (preshifting the poles by some
fraction of r).

Full predistortion results in a transfer function t,(s) given by

1 JI(s*+p%)

tp(s)=K~~

€ [Mls—(v+n)]

where K is introduced to ensure that 1,(s) has a maximum
magnitude of unity. Fig. 2 illustrates the pole predistortion of a
6-pole, elliptic-function filter, and the effect on the transmission
and return loss is shown in Figs. 3 and 4. The group delay of the
lossless filter is essentially recovered by the predistorted process.
Two properties of this procedure are important to the filter
design. As shown in Fig. 4, pole predistortion increases the
amount of power reflected and the insertion loss of the network.
These effects can be understood in terms of the design process. In
the predistorted, lossless case, the band-edges of the transmission
response are considerably higher than the center. This is neces-
sary to give the resulting filter (with loss present) a flat in-band
response. The introduction of loss attenuates the band-edges
more than the center of the band, so the response flattens out.

(5)
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Fig 1. Equivalent circuit of n-coupled cavities with uniform dissipation.
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2. Typical location of poles and zeros for a 6-pole elliptic-function
bandpass filter.
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Fig. 3. Theoretical transmission responses of a 6-pole elliptic-function filter.

Pole predistortion is, therefore, limited to those applications
where minimum insertion and maximum return loss are not
required.

Several other effects can be examined in terms of the transfer
function pole locations. For elliptic-function filters, the behavior

NORMALIZED FREQUENCY
Fig. 4. Theoretical return loss responses of a 6-pole elliptic-function filter

of the pole closest to the frequency axis dominates the band-edge
response. It is largely the movement of this pole in the lossy,
nonpredistorted design that leads to rounding of the band-edge.
If this pole pair occurs at s = — a + jb, a good approximation of
the center frequency insertion loss Ly that will result with a
predistorted design is

Lpc= 2010g( r)’ a>r. (6)

Thus, more selective filters will demonstrate greater insertion
losses by using predistortion, since the poles are closer to the real
axis. The real part of this pole also limits the amount of predis-
tortion that can be applied. The use of (6) will give a good initial
indication of whether full or partial predistortion of the network
is the most desirable.

IIL

The synthesis of the predistorted transfer function (5)
is nearly identical to that described by Atia, Williams, and
Newcomb [4]. Using Darlington’s notation [1], the lossless low-
pass transfer function is expressed as

P(s)
A(s)+sB(s)

SYNTHESIS

(s) = Q)
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Fig. 5. Examples of reflection zero choices for synchronous and asynchronous

realizations. (a) Synchronous. (b) Asynchronous.

and the reflection as
_ A'(s)+sB'(s)
p(s)= A(s)+sB(s) ®)
where A(s), A’(s), B(s), B'(s), and P(s) are all even poly-
nomials. The general short-circuit admittances are
1 = jIm[4(s)] +s[B(s)~B(s)]
A(s)+Re[ 4'(s)]
V. — -1 P(s)
" JRLR, A(s)+ Re[ 4(s)]
, 1) +5[B(s)+ B(s)]
"R, A(s)+ Re[4(s)] '

YY11=R1

)

The coupling matrix is constructed from the residues of Y,
and Y, evaluated at the roots of the polynomial A(s)
+ Re[A’(s)]. The type of solution that results depends on the
choice of reflection zeros derived from the relation |p(s)? = p(s)
-p(s). For the conventional, nonpredistorted design, all reflection
zeros lie on the imaginary axis, so only one choice exists. This

results in

(10)

Im|[ 4'(s)] = B'(s)=0.
n are equivalent, and a symmetri-

Thus, the residues of Y}, and '
cal filter results.

In the predistorted design, a choice can be made in selecting
the reflection zeros. If total left- or right-half plane zeros are
chosen, then

n

Im[ 4'(s)] =0. (11)

The residues of Y;; and Y,, will be real, but they will differ.
Thus, an asymmetric, synchronously tuned filter will be realized.
If a combination of left- and right-half plane zeros is chosen, the
result is

B'(s)=0. (12)
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The real parts of the residues will be equivalent, so the couplings
and resistances will be symmetrical. However, the introduction of
a nonzero imaginary part in the admittances will cause the
solution to be asynchronous. This means that the cavities will be
tuned to frequencies that are slightly offset from the filter center
frequency. The sum of these mistunings will be zero for a filter
with a frequency response that is symmetrical about its center
frequency.

Fig. 5 illustrates examples of possible reflection zero choices.
Typically, a total left- or right-half plane set is chosen to simplify
the tuning process. However, in cases where this choice dictates
coupling or resistance values that may be difficult to realize, the
asynchronous solution may be the most attractive.

1V. SixTH-ORDER FILTER DESIGN

As a design example, the predistortion of a 6-pole elliptic
function filter is presented. Assuming an in-band ripple of 0.15
dB and a selectivity of 1.135, the poles of the transfer function
are

~0.6333+ j0.4150

—0.23294 0.9107

—0.0464 + j1.0264.
For the application of a very narrow-band filter with a fractional
bandwidth of 0.734 percent and a Q of 8000, the pole shift will

be r=0.0170. Full-pole predistortion can be used, and as an
approximation, the insertion loss will be about

0.0464—-0.0170

Lre= 2°1°g[ 0.0464

] =3.96 dB.

The new transfer function poles are
—0.6163+ j0.4150
—0.2159+ j0.9107
—0.0294 + j1.0264.

The zeros of the transfer function (before and after predistortion)
are + j1.1553 and + j1.4273.

Choosing all left-half plane reflection zeros, the Darlington
polynomials become

A(s) =s°+3.105* +2.625% +0.51
B(s)=1.725*+3.18s>+1.41
P(s)=0135*+0.435%+0.34
A'(s) =55 +2.695* +2.07s2 +0.37
B’(s) =1.465% +2.555% +1.08.

Note that Im[A’(s)]= 0 and B’(s) # 0. Thus, the resulting filter
will be synchronously tuned, but its couplings and resistances will
not be symmetrical.

Evaluating the residues of the short-circuit admittances at the
roots of { A(s)+ Re[A’(s)]} and rotating the resulting matrix to
the desired form, the normalized couplings and resistances are
found to be

R, =1.588 M, =—0.3852

R =0130 M., = 0.559
My, =1.037 My =—0139
M, = —0.672 My, = —0.411.
M,, = —0379

With these values, the implemented filter showed an insertion
loss of 4.0 dB.
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Transmission and return loss response of a- predistorted, 12-GHz
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In-band transmission responses of a predistorted, 12-GHz 20-MHz
bandwidth 4-pole elliptic-function filter.

Fig. 8. A 12-GHz 4-pole predistorted elliptic-function filter.
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Fig. 10.

In-band transmission responses of lossy and predistorted 6-pole

C-band elliptic-function filters.

Since the @ may not be exactly known before the filter is
constructed, several iterations may be necessary. However, as-
suming a fairly good initial estimate of the Q, the parameter
values should change only slightly.

V. EXPERIMENTAL FILTERS

A 20-MHz bandwidth, 4-pole, elliptic-function, predistorted
filter with a center frequency of 12 GHz was designed to operate
in dual TE, ;-moded aluminum cavities. For a Q of 8000, the
pole predistorted design factor r=1/(Q,Fy, )=0.075. The
asymmetrical set of couplings was derived, and the physical
cavity dimensions were determined by using standard lossless
filter design techniques. The experimental insertion and return
loss of the filter is shown in Fig. 6, and the in-band insertion loss
is shown in Fig. 7. The measured response corresponds to a
cavity Q in excess of 9000. Fig. 8 is a photograph of this filter.

To further illustrate the effects of predistortion, two 6-pole
elliptic filters were designed with the dual HE,, 8 dielectric-loaded
cavity mode. The first filter was designed by using conventional
lossy techniques [4], and the second filter design was derived
from the numerical example given in the previous section. Both

designs had a center frequency of 3.986 GHz, a bandwidth of 29
MHz, and an unloaded Q of 8000. The measured responses for
both units are compared in Figs. 9 and 10. The effects of
predistortion are clearly evident. Fig. 11 is a photograph compar-
ing the size of a C-band, air-filled, dual-mode cavity filter and the
C-band, dual-mode dielectric-loaded cavity filter.

It should be emphasized that, because of the poor return loss
generated by the predistortion process, high-quality circulators
(with return loss greater than 35 dB and VSWR less than 1.04)
must be used with predistortion filters.

VI. CONCLUSIONS
Predistortion pole techniques, as applied to optimum filter
transfer functions, are successfully realized in general

microwave-coupled resonator structures. Symmetrical asynchro-
nous and asymmetrical synchronous solutions are derived. Tech-
niques such as these can lead to significant improvements in
system efficiencies for applications such as satellite transponder
input multiplexers, where insertion loss can be traded for in-band
flatness.
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Fig. 11.
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Comparison of the C-band dual-mode dielectric-function filter and a

C-band air-filled dual-mode filter.
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Singularity Extraction from the Electric Green’s
Function for a Spherical Resonator

M. BRESSAN anD G. CONCIAURO

Abstract —The electric dyadic Green’s function for a spherical resonator
is expressed as a sum of two dyadics given in closed form and a dyadic
given in the form of a series. The first two dyadics diverge at the source
point and they represent a low-frequency approximation for the Green’s
function, valid up to frequencies moderately lower than the resonant
frequency of the dominant mode. The dyadic given in the form of a series
is finite at the source and takes into account cavity resonances. It is given
either as a one-index series, whose terms are transcendental functions of
the frequency, or as a double series, whose terms are rational functions of
the frequency. Both series have very good converging properties every-
where inside the cavity.

1. INTRODUCTION

The electric field at any point inside a cavity resonator bounded
by a perfectly conducting wall, filled with a linear, isotropic,
homogeneous medium with constitutive parameters €, p, and
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excited by time-harmonic (exp jwt) electric sources may be ex-
pressed as
o = , ~ ., L-J(#)
E(r) ]wpshinofV_VaGe(r,r Jk)-J(7) dv YRR

(1)
In this expression, r, r” are the observation and the source points,
respectively, k = w\/e_p , J is the current density, G, is the dyadic
Green’s function of the electric type, ¥ is the cavity volume, Vj is
a principal volume about » having dimensions proportional to §,
and, finally, L is a constant dyadic which is determined only
from the geometry of V; [1]. Numerical calculations of E may be
performed conveniently using a generalization of (1), differing
from it for ¥; being allowed to be finite and for the inclusion of a
further integral over V;, involving G, [2].

Green’s functions for bounded regions are usually given in the
form of modal expansions, obtained by general procedures such
as those described by Tai [3] and Felsen—Marcuvitz [4]. Examples
of these expansions are given in [5]-[8] and in the next section.
Though being of great theoretical interest, such modal series are
‘unsuitable for use in numerical algorithms (moment method, for
instance) which require the computation of the electric field
inside the source fegion. In this case, indeed, the Green’s function
must be computed at points #’ close to r, where the convergence
of the series is very poor due to the singularity of G, at ¥’ =r.
We recall that, in three-dimensional Green’s functions, this singu-
larity is of the order R™3, where R is the distance beiween the
source and the observation points.

This drawback can be avoided by using expressions where a
diverging term, expressed in closed form, is extracted from the
modal expansion of G,, so that the remaining series represents a
function finite at »’=r. This series, in fact, is expected to
converge very well everywhere. In this paper, we deduce an
expression of this type for a spherical resonator.

0018-9480,/85 /0500-0407$01.00 ©1985 IEEE



